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1 Green’s function

Consider a linear differential equation written in the general form

L(x)u(x) = f(x) (1)

where L(x) is a linear, self-adjoint differential operator, u(x) is the unknown
function, and f(x) is a known non-homogeneous term. We can write a solution
to Eq. 1 as

u(x) = L−1f(x) ≡

∫

G(x, x′)f(x′)dx′. (2)

Now

L(x)u(x) =

∫

L(x)G(x, x′)f(x′)dx′ = f(x). (3)

Thus
L(x)G(x, x′) = δ(x− x′). (4)

2 Green’s function in electrostatics

The basic equation for electrostatics is the Poisson equation

∇2Φ = −
ρ

ǫ0
, (5)

where Φ is the potential and ρ is charge density. In free space, we know that

Φ(x) =
1

4πǫ0

∫

ρ(x′)

|x − x′|
d3x′. (6)

So the potential at x due to a unit point charge at x′′, ρ(x′) = −4πǫ0 δ(x
′′−x′)

is

Φ(x) =
1

4πǫ0

∫

ρ(x′)

|x − x′|
d3x′ = −

1

|x − x′′|
. (7)

Or, due the singular nature of the Laplacian of 1/r, (the integral form of the
Guass’s theorem), ∇2(1/r) = 0 for r 6= 0 and its volume integral is −4π, we can
write the formal equation,

∇2(1/r) = −4πδ(x− 0), (8)

or, more generally,
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∇2

(

1

|x − x′|

)

= −4πδ(x− x′), (9)

The free-space Green’s function for the three-variable Laplace equation is
given in terms of the reciprocal distance between two points. That is to say the
solution of the equation

∇2G(x,x′) = −4πδ(x− x′) (10)

is

G(x,x′) = −
1

|x− x′|
(11)

This green’s function is the potential due to a charge at x′. So the potential is

Φ(x) =

∫

G(x,x′) · ρ(x′) =
1

4πǫ0

∫

ρ(x′)

|x − x′|
d3x′. (12)

With boundary, the Green’s function becomes

G(x,x′) =
1

|x − x′|
+ F (x,x′) (13)

with the function F satisfying the Laplace equation inside the volumn V

3 Eigenfunction expansion for Green’s Function

For, the Laplace equation in spherical coordinates (r, θ, φ), when the system has
azimuthal symmetry, i.e. the solution is independent of φ, the general solution
is:

Φ(r, θ) =

∞
∑

l=0

[Alr
l + Blr

−(l+1)]Pl(cos θ). (14)

Then the Green’s function can be expanded at x′

1

|x − x′|
=

∞
∑

l=0

rl
<

rl+1
>

Pl(cos θ) (15)

Due to boundary conditions, the system has eigenfunctions! For example,
using separation of variables, we can solve the Laplace equation in a rectangular
box with boundary conditions. Then the solution is the superposition of the
eigenfunctions (normal modes, standing waves in this case).

For example, for an elliptic differential equation of the form

∇2ψ(x) + [f(x) + λ]ψ(x) = 0, (16)

with homogeneous boundary conditions, the system can only has well-behaved
solutions for certain values of λ. These values of λ, denoted by λn, are called
eigenvalues and the solutions ψn(x) are called eigenfuctions. The eigenvalue
differential equation in written:

∇2ψn(x) + [f(x) + λn]ψn(x) = 0, (17)
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The eigenfunction are orthogonal. Suppose now we wish to find the Green’s
function for the equation:

∇2
xG(x,x′) + [f(x) + λ]G(x,x′) = −4πδ(x − x′), (18)

with the same boundary conditions, where λ is not equal to one of the eigen-
values λn. Then the Green’s function can be expanded in a series of the eigen-
functions of the form:

G(x,x′) =
∑

n

an(x′)ψn(x). (19)

Substitution into the differential equation for the Green function leading to:

∑

m

am(x′)(λ − λm)ψm(x) = −4πδ(x − x′), (20)

Multiply both sides by ψ∗
n(x) and integrate over the volume using the orthogo-

nality conditions, we have

G(x,x′) = 4π
∑

n

ψ∗
n(x′)ψn(x)

λn − λ
(21)

For Poisson equation, f(x) = 0 and λ = 0, we let the eigen Eq. 17 equation
be the wave equation over all spaces:

(∇2 + k2)ψk(x) = 0 (22)

with the continuum of eigenvalues, k2, and the eigenfunctions:

ψk(x) =
1

(2π)3/2
eik·x (23)

Then, according to Eq. 21, the infinite space Green’s function has the expansion:

1

|x − x′|
=

1

2π2

∫

d3k
eik·(x−x′)

k2
(24)

4 Green’s function for wave equation

From the Maxwell equations, we can derive the wave equations:

∇2Φ −
1

c2
∂2φ

∂t2
= −

ρ

ǫ0
(25)

and

∇2A −
1

c2
∂2A

∂t2
= −µ0J (26)

We consider the basic structure

∇2Ψ −
1

c2
∂2Ψ

∂t2
= −4πf(x, t) (27)
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For simple situation of no boundary surfaces, suppose that Ψ(x, t) and f(x, t)
have the Fourier integral representations,

Ψ(x, t) =
1

2π

∫ ∞

−∞

Ψ(x, t)e−iωtdω

f(x, t) =
1

2π

∫ ∞

−∞

f(x, t)e−iωtdω. (28)

Inserting the above equation into the wave equation, the Fourier transform
Ψ(x, ω) satisfies the inhomogeneous Helmholtz wave equation

(∇2 + k2)Ψ(x, ω) = −4πf(x, ω) (29)

for each value of ω. Here k = ω/c is the wave number associated with frequency
ω. If there are no boundary surfaces, the Green function can depend only on
R = |R| = |x − x′|. The Green’s function satisfying

(∇2 + k2)Gk(x,x′) = −4πδ(x− x′) (30)

is
Gk(R) = AG

(+)
k (R) + BG

(−)
k (R) (31)

where

G
(±)
k (R) =

e±ikR

R
(32)

The first term represents a diverging spherical wave propagating from the origin,
while the second represents a converging spherical wave.

To understand the different time behaviors associated with G
(+)
k and G

(−)
k

we need to construct the corresponding time-dependent Green functions that
satisfy

(

∇2 −
1

c2
∂2

∂t2

)

G(±)(x, t;x′, t′) = −4πδ(x− x′)δ(t− t′) (33)

The source term for the Helmholtz equation Eq. 29 is

f(x, ω) =

∫ ∞

∞

f(x, t)eiωtdt =

∫ ∞

∞

δ(x − x′)δ(t− t′)eiωtdt = −4πδ(x − x′)eiωt′

(34)

So the solution are therefore G
(±)
k (R)eiωt′ . So, from Eq. 28 the time-dependent

Green functions are

G(±)(R, τ) =
1

2π

∫ ∞

−∞

e±ikR

R
e−iωτdω (35)

where τ = t−t′ is the relative time. For a nondispersive medium where k = ω/c,
the integral above is a delta function. So the Green’s function are

G(±)(R, τ) =
1

R
δ

(

τ ∓
R

c

)

(36)

or,

G(±)(R, τ) =
δ
(

t′ −
[

t∓ |x−x′|
c

])

|x − x′|
(37)

The Green function G(+) is called the retarded Green function because it ex-
hibits the causal behavior associated with a wave disturbance: an effect observed
at the point x at time t is caused by the action of a source a distance R away
at an earlier or retarded time, t′ = t−R/c.
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5 propagator

The Schrodinger Equation

ih̄
d

dt
|ψ(t)〉 = H |ψ(t)〉 . (38)

General approach (not in a specific representation).

ih̄ |ψ̇(t)〉 = H |ψ(t)〉 . (39)

Now solve the time-independent Schrodinger equation

H |E〉 = E |E〉 . (40)

Then
|ψ(t)〉 =

∑

|E〉 〈E|ψ(t)〉 ≡
∑

aE(t) |E〉 . (41)

From the Schrodinger Equation, Eq. 39, we have

(ih̄∂/∂t−H) |ψ(t)〉 =
∑

(ih̄ȧE − EaE) |E〉 (42)

or
ih̄ȧE = EaE (43)

Then the solution to aE is

aE(t) = aE(0)e−iEt/h̄. (44)

Or,
〈E|ψ(t)〉 = 〈E|ψ(0)〉 e−iEt/h̄. (45)

So
|ψ(t)〉 =

∑

E

|E〉 〈E|ψ(0)〉 e−iEt/h̄. (46)

Now the propagator U(t) is

U(t) =
∑

E |E〉 〈E| e−iEt/h̄ , (47)

and
|ψ(t)〉 = U(t) |ψ(0)〉 (48)

If choose eigenstates in terms of momentum, then

U(t) =

∫ ∞

−∞

|p〉 〈p| e−iE(p)t/h̄ dp (49)

Or, actually,
U(t, t0) = e−iH(t−t0)/h̄ (50)

for t > t0!!
Now choose space x representation:

〈x|ψ(t)〉 =

∫ ∞

−∞

〈x|U(t)|x′〉 〈x′|ψ(0)〉 dx′ (51)
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Or,

ψ(x, t) =

∫ ∞

−∞

U(x, t;x′, t′)ψ(x′, t′)dx′, (52)

where U(x, t;x′, t′) = 〈x|U(t− t′)|x′〉. Suppose we start off with a particle
localized at x′ = x′0, that is, ψ(x′, t′) = δ(x′ − x′0). Then

ψ(x, t) = U(x, t;x′0, t
′) (53)

In other words, the propagator (in the X basis) is the amplitude that a particle
starting out at (x′0, t

′) ends with at (x, t)

6 Propagator and green’s function

Recall Schrodinger Equation in X basis

[i∂t −H ]ψ(x, t) = 0. (54)

We define the Green’s function by

[i∂t −H ]G(x, t;x′, t) = δ(x− x′)δ(t− t′) (55)

with boundary condition G(x, t;x′, t) = 0, for t < t0. Then the wave function is

ψ(x, t) =

∫

dx′G(x, t;x′, t′)ψ(x′, t′). (56)

7 Green’s function in scattering

7.1 Definition of many-body Green’s function

The scattering problem is to find the full solution of Schrodinger equation

(∇2 + k2)ψk =
2µ

h̄2 V ψk (57)

for a particle with energy k2h̄2/2µ One fines the Green’s function

(∇2 + k2)G0(r, r′) = δ3(r − r′) (58)

So Green’s function is the effect of a unit (δ) potential. The solution will be

ψk(r) = ψ0(r) +
2µ

h̄2

∫

G0(r, r′)V (r′)ψk(r′)d3r′ (59)

where ψ0(r) is an arbitary free-particle solution of energy k2h̄2/2µ:

(∇2 + k2)ψ0 = 0 (60)

So the Green’s function is the propagation of the perturbation (the potential).
Make Fourier transformation:

G0(r − r′) =

∫

d3q eiq·(r−r′)G0(q) (61)
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G0(q) is the amplitude of the propagation of mode eiq·(r−r′) of G0(r− r′). And

δ3(r − r′) =
1

(2π)3

∫

d3q eiq·(r−r′) (62)

Using ∇2eiq·(r−r′) = −q2eiq·(r−r′), equation 58 becomes

(k2 − q2)G0(q) =
1

(2π)3
(63)

Then

G0(q) =
1

(2π)3(k2 − q2)
(64)

So

G0(r − r′) =
1

(2π)3

∫

d3q eiq·(r−r′)G0(q)

=
1

(2π)3

∫

d3q
eiq·(r−r′)

(k2 − q2)
(65)

To make this integral converge, write

G0(q) =
1

(2π)3(k2 − q2 + iǫ)

1

(2π)3(q − (k + iδ))(q − (−k − iδ))
(66)

Make a semi-circuit contour integral in the upper plane, we have

G0(r − r′) = lim
δ→0

1

(2π)3

∫

d3q
eiq·(r−r′)

(q − (k + iδ))(q − (−k − iδ))

= lim
δ→0

2πiRes(k + iδ)

= lim
δ→0

2πi
i

8π2r
ei(k+iδ)r

= −
eikr

4πr
(67)

8 Many-body Green’s function

In the interaction representation, the Hamiltonian is separated into:

H = H0 + V, (68)

where the unperturbed part H0 is exactly solvable. Operators have a time
dependence

Ô(t) = eiH0tOe−iH0t, (69)

and the wave function have a time dependence

ψ̂(t) = eiH0tψ(t) = eiH0te−iHtψ(0), (70)
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where ψ(t) is the wave function in the Schrodinger picture. Notice eiH0te−iHt 6=
eiH0t−iHt unless [H0, V ] = 0. In the interaction picture, the wave function can
be solved from

∂

∂t
ψ̂(t) = −iV̂ (t)ψ̂(t) (71)

which leads to the operator U(t):

U(t) = eiH0te−iHt

= 1 +

∞
∑

n=1

(−i)n

n!

∫ t

0

dt1

∫ t

0

dt2 · · ·

∫ t

0

dtnT [V̂ (t1)V̂ (t2) · · · V̂ (tn)]

= T exp

[

−i

∫ t

0

dt1V̂ (t1)

]

(72)

where T is the time-ordering operator The S matrix is defined by

ψ̂(t) = S(t, t′)ψ̂(t′). (73)

The definition of wave function in interaction picture immediately gives

S(t, t′) = U(t)U †(t′) = T exp

[

−i

∫ t

t′
dt1V̂ (t1)

]

(74)

Notice ψ̂(0) = ψ(0)
At zero temperature the electron Green’s function is defined as

G(λ, t− t′) = −i 〈|TCλ(t)C†
λ(t′)|〉 (75)

The quantum number λ can be anything depending on the problem of interest.
At zero temperature the state |〉 must be the ground state. If the Hamiltonian
of the problem is chosen to be H , then |〉 is the ground state of H , not H0, and
not known. Write H = H0 + V , choose ground state of H0. In the definition
of the Green’s function the Cλ represent states of H0, while the ground state
|〉 is an eigenstate of H . Furthermore, Eq. 75 is defined in the Heisenberg
representation, so that |〉 is independent of time, while Cλ(t) is given by Cλ(t) =
eiHtCλe

−iHt.
To understand the Green’s function is to observe that it describes a certain

Gedanken experiment. For t > t′, one takes the real ground state, and at a time
t′ one creates an excitation λ. At a later time t one destroys the same excitation.
Now if λ were an eigenstate of H , with HC†

λ |〉 = ελC
†
λ |〉 and H |〉 = ε0 |〉, then

this state would simply propagate with a phase term

G(λ, t > t′) = −iexp[−i(t− t′)(ελ − ε0)]. (76)

Because λ is not usually an eigenstate of H , the particle in the state λ gets
scattered, shifted in energy, etc. When one measures at a later time t, to see
how much amplitude is left in the state λ, the measurement provides information
about the system.

The Green’s function can be convert to the interaction representation:

G(λ, t− t′) = −i
0 〈|T Ĉλ(t)Ĉ†

λ(t′)S(∞,−∞)|〉0
0 〈|TS(∞,−∞)|〉0

(77)
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A Green’s function can also be defined for the special case where the interactions
V = 0 and hence the S matrix is unity:

G(0)(λ, t− t′) = −i0 〈|T Ĉλ(t)Ĉ†
λ(t′)|〉

0
(78)

There are two quite different types of electronic systems in which we want
o employ the Green’s function analysis.

1. An empty band. Here the properties are studied of an electron in an
energy band in which it is the only electron. An example is an electron in the
conduction band of a semiconductor or an insulator. In this case the ground
state is the particle vacuum. The unperturbed Green’s function is

G(0)(λ, t− t′) = −iΘ(t− t′)e−iελ(t−t′) (79)

The Fourier transform gives

G(0)(λ,E) = −i

∫ ∞

0

dt ei(E−ελ+iδ)t =
1

E − ελ + iδ
(80)

2. A degenerate electron gas. The electrons are in a Fermi sea at zero tem-
perature. The standard example is a simple metal. The system has a chemical
potential µ, all electron states with E < µ is occupied. If the unperturbed elec-
trons (eigenstates of H0) are characterized by an energy εk. The ground state
|〉0 has all states εk < µ filled and states εk > µ empty. It is convenient and
conventional to measure the electron’s energy relative to the chemical potential,
to define ξk = εk−µ. For a spherical Fermi surface with Fermi wave vector pF ,

0 〈|CkC
†
k|〉0 = Θ(pF − k) (81)

0 〈|C
†
kCk|〉0 = Θ(k − pF ) (82)

or more generally,

0 〈|C
†
kCk|〉0 = Θ(−ξk) = lim

β→∞

1

eβξk + 1
≡ nF (ξk) (83)

The unperturbed Green’s function is now

G(0)(λ, t− t′) = −i[Θ(t− t′)Θ(ξk) − Θ(t′ − t)Θ(−ξk)]e−iξk(t−t′) (84)

The Fourier transform is

G(0)(k, E) =
Θ(ξk)

E − ξk + iδ
+

Θ(−ξk)

E − ξk − iδ
(85)

3. Phonons. The Green’s function for phonons is defined as

D(q, λ, t− t′) = −i 〈|TAqλ(t)A−qλ(t′)|〉 (86)

Aqλ = aqλ(t) + a†−qλ(t) (87)

The subscripts λ refer to the polarization of the phonons. Most applications
have one kind of phonon in Hamiltonians which do not mix polarizations. We
omit these subscripts for now. At zero temperature there are no phonons. The
ground state is again vacuum.
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At zero temperature, the unperturbed Green’s function for phonon is

D(0) = (q, t− t′) = −i[Θ(t− t′)e−iωq(t−t′) + Θ(t′ − t)e−iωq(t′−t)]. (88)

The Fourier transform is

D(0)(q, ω) =

∫ ∞

−∞

dt eiωtD(0)(q, t) =
2ωq

ω2 − ω2
q + iδ

(89)

Sometimes it is useful to have the phonon Green’s function at nonzero tem-
perature. In this case, the thermal average is taken of the phonon occupation
numbers,

0 〈|aqa
†
q|〉0 = Nq + 1 (90)

0 〈|a
†
qaq|〉0 = Nq =

1

eβωq − 1
(91)

and the Green’s function of time is

D(0) = (q, t− t′) = −i[(Nq + 1)e−iωq|t−t′| +Nqe
−iωq|t

′−t|]. (92)

8.1 Calculation of Green’s function

The Green’s function is evaluated by expanding the S matrix S(∞,−∞) in Eq.
74 in a series such as Eq. 72:

G(p, t− t′) =

∞
∑

n=1

(−i)n

n!

∫ ∞

−∞

dt1

∫ ∞

−∞

dt2 · · ·

∫ ∞

−∞

dtn

0 〈|T Ĉλ(t)V̂ (t1)V̂ (t2) · · · V̂ (tn)Ĉ†
λ(t′)|〉0

0 〈|TS(∞,−∞)|〉0
(93)

The terms such as

0 〈|T Ĉλ(t)V̂ (t1)V̂ (t2)V̂ (t3)Ĉ
†
λ(t′)|〉0 (94)

are to be calculated. Suppose that V̂ (t1) is the electron-electron interaction:

V̂ (t1) =
1

2

∑

k′kq

∑

ss′

4πe2

q2
C†

k+q,sC
†
k′−q,s′Ck′,s′Ck,s e

i t1(ξk+q+ξk′
−q−ξk−ξk′ ) (95)

The Wick’s theorem states that a time-ordered bracket may be evaluated by
expanding it into all possible parirings. Each of these pairings will be a time-
ordered Green’s function or a number operator nF or nB
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